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Generating functions for enumerating self -avoiding rings 
on the square lattice 

I G Entingt 
Department of Physics, Northeastern University, Boston, Massachusetts 021 15, USA 

Received 28 April 1980 

Atqtract. It is shown that generating function techniques provide an efficient means of 
enumerating the number of self-avoiding rings (polygons) on the square lattice. The 
techniques can be applied to a number of related problems in lattice statistics and statistical 
mechanics. The enumeration has been extended to polygons of up to 38 steps. 

1. Introduction 

The enumeration of polygons on various regular lattices is not only an interesting 
problem in its own right but is also of considerable importance in the statistical 
mechanics of lattice models. The results of polygon counts are an important part of 
many derivations of exact series expansions and, less directly, Domb (1969, 1972, 
1974) has used the combinatorial properties of polygons as a basis for estimating the 
properties of lattice models. 

The lattice statistics of polygons (or self-avoiding rings) is related to that of 
self-avoiding walks (Hammersley 1957, Sykes 1961) and thus to lattice models of 
polymers (Hiley and Sykes 1961) and to the n = 0 limit of the n-vector model (de 
Gennes 1972). 

The main object of the present paper is to use the polygon enumeration problem as 
an example of the use of generating function techniques in problems which have 
‘connectivity’ constraints when they are treated using transfer matrix techniques. 
Connectivity constraints do not occur in the king model but do occur in systems such as 
the quantum XY model (because of the time-ordering operator). 

The present work grew out of the author’s work on the finite lattice method of series 
expansions (de Neef and Enting 1977, Kim and Enting 1979, Enting and Guttmann 
1980). The polygon enumeration differs from these earlier calculations in several 
important ways. 

The finite lattice method involves three stages, two formal and one computational. 
(i) The series expansion has to be formally expressed as a linked-graph expansion. 

(ii) Formally, the linked-graph expansion has to be re-expressed as a sum of 

(iii) The contributions for finite rectangles must be computed and then combined in 

Of these steps: (i) the linked-graph formulation was known for many models !ong 

contributions from finite rectangles. 

the appropriate way. 

t Present address: CSIRO, Atmospheric Phys., PO Box 77 Mordialloc Vic. 3195, Australia. 
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before the finite lattice method was first described; (ii) the resummation is given once 
and for all by Enting (1978); (iii) the contributions from rectangles can be computed 
efficiently by using techniques based on a transfer matrix formalism. 

In the enumeration of polygons we are only concerned with connected graphs, and 
so the formal aspects of the combinatorics involve ensuring that the generating 
functions exclude all contributions from two or more co-existing polygons. This change 
modifies the type of resummation that is required, as indicated in § 3. Section 2 shows 
how simple classes of generating function can be used to enumerate small polygons, and 
0 4 extends these concepts to provide rules for handling the general case. Section 5 
shows how these rules can be used as the basis of an explicit construction of the 
generating functions. 

2. Examples of polygon generating functions 

In graph-theoretical terms the phrase ‘n-step polygon’ specifies a unique graph. The 
numbers in which we are interested are U, ,  which are defined by taking the limit, for 
large N, of N-’ times the number of ways that an n-step polygon graph can be 
embedded on a square lattice of N sites. An alternative definition is to take an origin 
near the centre of an arbitrarily large square lattice, and define 2nu, as the number of 
walks from the origin which return after n steps without any other self-intersections 
(self-avoiding rings in the terminology of Sykes et a1 1972). 

In what follows, each of the U, types of embedding will be regarded as a distinct 
polygon. The term ‘polygon’ is being used in a geometrical sense or as a shorthand for 
‘realisation of an embedding of the polygon graph’. Two polygons are regarded as the 
same if they can be mapped onto one another by translations. Rotations and reflections 
of asymmetric polygons are regarded as distinct. 

The generating function for polygons on the square lattice is 

U ( x )  = 1 U , X , .  
n 

This section will work with generating functions for particular classes of polygon 
occurring on rectangular subgraphs of the square lattice, the rectangles having dimen- 
sions 3 sites X n sites. Figure 1 shows the 3 X 6 rectangle together with some of the 
polygons. 

If we draw a vertical line such as the broken line ‘ p ’  in figure l ( a )  and then specify 
the intersection of this line with a polygon then, conditional on this fixed intersection, 
the self-avoidance constraint acts independently on the left and right of p .  The number 
of polygons with a given intersection is simply the number of allowed left-hand sides (a, 
with n steps) multiplied by the number of allowed right-hand sides (b,  with m steps). 
We can construct generating functions A ( x )  = Cu,x” and B ( x )  = Cb,x” for each side. 
The number of polygons with the fixed cross-section and r steps is just C j  arbjp2-,, which 
is the coefficient of x r  in the combined generating function x 2 A ( x ) B ( x ) .  (The -2 and 
the x 2  are to include the two steps that intersect line p . )  

The transfer matrix formalism is based on the same idea that independence of 
constraints enables us to obtain a combined count by multiplying independent sub- 
counts, or a combined generating function by multiplying partial generating functions. 

If we draw two lines such as ‘ p ’  and ‘q’ in figure l(a), then the constraints act 
independently in each of the three regions. If we have partial generating functions for 



Generating functions for self-avoiding rings 3715 

Id1 

Figure 1. ( a )  3 x n rectangle. ( b ) ,  (c), (d ) ,  ( e )  are four polygons that can be embedded in the 
rectangle in 1, 1 ,2  and 4 ways respectively. In ( a )  the lines p and q divide the rectangle into 
three disjoint regions so that, given the specification of how a polygon crosses these lines, the 
self-avoidance constraint acts independently in each region. 

all polygon segments to the left of ' p ' ,  we can construct corresponding partial generating 
functions for all polygon segments to the left of ' q ' ,  simply by running through all 
allowed cross sections on p together with all allowed arrangements of steps between p 
and q. The important points are that if the cross section q is fixed, then all the 
manipulations are independent of what happens to the right of q and the arrangements 
to the left of p contribute only through partial generating functions for each cross 
section on p .  

We will now construct the generating function for all ways of putting polygons on the 
3 x n  rectangle, counting only polygons that span the full (n-site) length of the 
rectangle. 

For each vertical line there are three possible cross sections-we call these a, p and 
P'-which are shown in figure 2 .  If we draw the vertical line through the leftmost 
squares of figure l ( a ) ,  then the three partial generating functions for the left-hand sides 
are A:' = x 2  and A:' = A:) = x .  (The superscript denotes the position of the cross 
section line.) 

In general A;' = A!,) by symmetry. We wish to obtain the A("+') from the A'"'. The 
various combinations of bonds are shown in figure 3, leading to the results 

A:+'' =x2A&"'+x3(AF)+A$)) 

= X 2 ~ : ) + 2 x 3 ~ p ,  
A!+') =A$+')  = X3A2) +X2AF).  

The generating function for all ways of having a polygon span the length of a 
rectangle is obtained by considering the ways of closing each loop, and leads to 

G3," = x4A2-') +2x3A&n-". 

I 

1 I 
I I 

4 I .-. .-. . I .  

* .  *-. e- , 
I I I 

1 l 
'7' . I .  

a P P' 

Figure 2. The three distinct ways jn which a vertical section line can intersect a polygon on 
the 3 x n rectangle. 
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Figure 3. The various combinations of steps that can occur between consecutive section 
lines. The heavy shaded steps are regarded as being added to the segments to the left. This 
corresponds to multiplying the corresponding partial generating functions by the algebraic 
factors indicated. 

Table 1 iterates these equations to obtain the generating functions G3,n for n =: 2 , 3 , 4 .  

Table 1. The partial generating functions used in constructing generating functions for 3 x n 
rectangles. The entries are obtained by successive applications of equations (2.2), (2.3) and 
(2.4). 

~ ~~ ~~~~~ ~ 

2 1 X X 2x4 + x6 

2 3x4  x 3 + s 5  2x6 + 5xs 
3 5 x 6 + 2 x 8  x5  + 4x7 2x8+  1 3 x ' " f  2x'*  

These generating functions include contributions from polygons that can fit within 
the 2 X n rectangles, each of which can occur in the 3 x n rectangle in two ways. If we 
define gm,H as the generating function for polygons occurring in the m x n rectangle but 
not in any smaller rectangle, then 

( 2 . 5 )  6) g2,n = x , 
(ii) g3 , ,  = G3,,, - 2x2", ( 2 . 6 )  

(iii) g , m  = gm,m . ( 2 . 7 )  

2n 

and since each polygon will contribute to one and only one of the g,,,n (and in only one 
way) we can put 

2g2.3 f 2&,4 $- 2 8 2 s  + g3.3 + 2g3,4 u(X) I: g2,2 
=2G3,4  + G3,3 - 2 x 8  + 2 x " f  2 x 4  

= x 4  + 2 x 6  + 7 x s  + 2 8 x  lo + 4 x I 2 .  (2.8) 
Since any polygon graph of n steps can be embedded in some rectangle of perimeter n ,  
the approximation (2 .8)  correctly enumerates .all polygons of ten or fewer steps. 
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3. General rules for combining rectangles 

In the previous section we introduced g,,, the generating function for polygons that 
fitted into an n X m rectangle but which did not fit into any smaller rectangle. Since the 
smallest rectangle is uniquely defined for each polygon, and since each polygon fits into 
its smallest rectangle in precisely one way (since rotations are regarded as giving a 
different polygon), we have 

or, approximately, 

U ( x )  = U(X)'k' = gm,,. 
m,n 

m + n s k  

(3.1) 

(3.2) 

The approximation U ( X ) ' ~ '  correctly enumerates all polygons with 2k  - 4 or fewer 
steps. 

We can use the symmetry gm,, = g,,,, to express (3.2) as 

( 3 . 3 ~ )  

(3.3b) 

a,, = 2,  m <n, m + n s k ,  (3.3c) 

am,n = 0 ,  otherwise. (3 .3d)  

In practice we do not calculate gm,n but use G,,,, the generating function enumerating 
all ways of having polygons which fit in an m X n rectangle but not in any rectangle of 
length less than n. (The reasons for this choice are given in the following section.) 

A polygon that contributes to gm,, will contribute to Gp,h in p - m + 1 ways (each 
different vertical location contributes): 

(3.4) 

This relation can be inverted to give 

gm,n = Gm,n -2Gm-l,n + Gm-2,n. (3.5) 

Inserting (3.5) into ( 3 . 3 ~ )  with k = 2p i- 1,  

( 3 . 6 ~ )  

(3.6d) 

bm.n = -2, m C n, m + n = 2 p ,  (3.6e) 

bm,, = 0 ,  otherwise. (3 .6f)  

The summations in ( 3 . 3 ,  (3.6) were obtained using results given by Enting (1978),  but 
they can be verified by explicit summation. 
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4. General formulation 

The generating functions Gm," are constructed by successively moving section lines 
across finite rectangles, constructing partial generating functions for the polygon 
segments characterised by particular cross sections. By running through all combina- 
tions of possible steps occurring between two successive positions of the section line, 
partial generating functions for various classes of graph can be constructed. 

When running through the possible arrangements of steps, a number of constraints 
need to be observed: 

(i) a weight of x must be associated with each step; 
(ii) each vertex must be of order 2 or 0; 

(iii) each graph must span the rectangle from end to end; 
(iv) the graphs constructed must all consist of only one connected component. 

Constraint (iv) is the one that causes most difficulty. One class of two-component graph 
is illustrated in figure 4. We can exclude these by ensuring that all graphs span the length 
of the rectangle (hence constraint (iii)) and that we never have two distinct components 
side by side. As we move the section line, the segments of graphs will consist of a 
number of disjoint walks that must, in the end, be connected to each other if a polygon is 
to be produced. 

There are two distinct ways in which two loops can be placed relative to one 
another-side by side or nested; these are shown in figure 5(a).  Figure 5 ( b )  shows how 
these loops cen be connected to make a single loop. Only connections equivalent to 
these are allowed. Connections equivalent to those shown in 5 ( c )  produce two separate 
components and so must be excluded. 

Figure 4. One way in which two separate components could occur. This is prevented by 
forcing all polygons to run the full length of the rectangle. 

Ci 

I I 

Figure 5. ( a )  The possible ways in which a pair of loops can be positioned relative to one 
another. ( b )  The ways in which each combination can be connected. (c) The types of 
connection that lead to forbidden, two-component graphs. 
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The necessary constraint is that no loop can be closed on itself so long as the section 
line cuts any other path. The constraint (iii) is introduced to ensure that such other 
paths as may occur will cut the section line. It is the introduction of constraint (iii) that 
leads to the use of asymmetric generating functions G,,,. 

To exclude loops which close on themselves we have to label the cross sections. One 
possible scheme would be to have a unique label associated with each loop but, because 
of the two-dimensional nature of the system, there is an alternative scheme that is more 
convenient when used in a computer program. The ends of loops are assigned the labels 
‘1’ and ‘2’ ,  depending on whether the end is the lower or the upper end for that loop. 
(The label ‘0’ is used in the program to denote an edge not occupied by part of any loop.) 
Figure 6 expresses the connections shown in figure 5 in terms of these labels. 

In class ( a )  a ‘2’ is joined to a ‘1’ immediately above it and the intersection and labels 
need no longer be considered. In ( b )  two ‘1’s are joined, and in (c) two ‘2’s. In each case 
the far end of the inner loop must be relabelled. Because of the possibility of having a 
third loop (shown as a broken curve) (or even more such loops) nested, the label to be 
changed is the one that is reached after passing an equal number of ‘1’s and ‘2’s. In 6 ( b )  
we change the first unmatched ‘2’ (working upwards from the join). In 6(c) we change 
the first unmatched ‘1’ (working downwards). 

Figure 6 ( d )  shows the case of a ‘1’ being joined to a ‘2’ immediately above it. This is 
forbidden if any other loops are present (see figure 5(c)), but if there are no other loops 
then the contribution is added to a running total for G,,,, with n equal to the current 
length. The contribution does not contribute to building Gm,,+l since we are applying 
constraint (iii) so as to exclude the type of graph shown in figure 4. 

Figure 6. The description of the allowed connections from figure 5 ( b )  in terms of the ‘l’, ‘2’ 
labelling. Case ( d )  does not contribute to subsequent partial generating functions but, if no 
other loops are present, it does contribute to the G,,,“ of the appropriate length. 

5. Square lattice generating functions 

The calculations can be shortened by a considerable amount by noting that the section 
lines used in § 2 (see figure 1) need not be straight. We do not have to build up the 
rectangle one column at a time-we need only add one site at a time. The form of the 
section line is as shown in figure 7 ,  where adding the circled site in each case takes us on 
to the next case. The circled sites are regarded as having two edges ‘in’ (those which cut 
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Figure 7. Successive section lines corresponding to adding one site at a time to a 3 x n 
rectangle. Adding the circled site in each diagram corresponds to moving the section line 
(the single solid line) into the position shown in the succeeding diagram. The double lines 
indicate the edges cut by the section line (the double broken edges are dummy edges 
introduced for uniformity). New steps added as the circled site is added lie along the single 
broken lines. 

the old section line but not the new section line) and two edges ‘out’ (those which cut the 
new section line but not the old). Polygon steps on the ‘in’ edges are not regarded as 
being connected until the circled site is added. Adding a site can thus connect only two 
loop segments: and so the cases shown in figures 5 and 4 are the only ones that need be 
considered. 

In figure 7 the single solid line is the section line, and the double lines are the edges in 
the rectangle that are cut by the section line (the double broken edges are ‘dummy’ 
edges that never include steps of the polygon, but are considered so that all vertices may 
be treated equivalently). The output edges (on which steps can be added in the process 
of going to the next position of the section line) are shown as single broken lines. 

Using ‘0’ (no step), ‘1’ (lowermost end of a loop) and ‘2’ (uppermost end of a loop) 
notation, figure 8 shows all the possible states of the ‘in’ edges and the corresponding 
states of the ‘out’ edges and the basis of the constraints picture in figure 4 .  The 
transformation back to the beginning of figure 8 is simply a renumbering of the edges 
cut by the section line so that the dummy edge is at the top. 

Once the construction is reduced to the cases considered in figure 8, the procedure is 
easy to implement on a digital computer. For large counts it was necessary to use the 
arithmetic of residues modulo various primes - 19, 215 - 49, 215 - 5 1 and 215 - 5 5 ) ,  
the integer counts being reconstructed from the residues at the completion of the 
calculations. 

0 J ,4 ,4 ,i ,J ,i ,io ,i ,j 
v + -- A 

io) (bl IC1 (dl (el i f )  
L-7-J 

r2 LO bo r’ p“ r2 yo ro ;;Ion 
0 2 1 0 0 1 0 0 

irelabel 1 

Figure 8. The various states of the ‘in’ edges for each new site are shown in the upper row. 
The corresponding ‘out’ states are shown in the lower row. Configurations marked with a * 
are forbidden if the site is at the bottom of a column. Configuration (f) cannot contribute to 
any larger rectangle’s, but does contribute to the current G,,,n if no other steps cut the 
section line. 
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Table 2 shows the numbers of n-step polygons for n S 3 8 .  This is a significant 
improvement on the results for n S 26 given by Sykes et a1 (1972). For each n; table 2 
also shows the maximum width (the number of sites) of rectangle that need be 
considered to obtain polygon counts for that number of steps. (For example at ten steps 
we need consider only polygons of width three as seen in # 2.) The bent section lines 
shown in figure 7 cut m + 1 edges in a rectangle m sites wide. The final column in table 2 
shows the number of ways in which the m + 1 edges can form the ends of self-avoiding 
loops. This is the number of distinct partial generating functions that need be 
considered. It is the growth in this number that limits the size of polygons that can be 
enumerated using these techniques. Rectangles 11, 12 and 13 sites wide would need 
15 511, 41 835 and 113 634 partial generating functions respectively. 

Table 2. The numbers of embeddings of n-step polygons on the square lattice. The 
maximum width (specified by number of sites) is for the widest rectangle needed for 
the particular number of steps. The number of partial generating functions (PGFS) is 
the number used in constructing rectangles of that width. 

Number Number of Maximum Number of 
of steps polygons width PGFS 

4 
6 
8 

10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
34 
36 
38 

1 
2 
7 

28 
124 
588 

2 938 
15 268 
81 826 

449 572 
2 521 270 

14 385 376 
83 290 424 

488 384 528 
2895432660 

17 332 874 364 
104653427012 
636737003384 

2 
2 
3 
3 
4 
4 
5 
5 
6 
6 
7 
7 
8 
8 
9 
9 

10 
10 

4 

9 

21 

51 

127 

323 

835 

2 188 

5 798 

6. Conclusions 

The main point of this paper is to illustrate the way in which generating function 
techniques can be applied to enumerations in lattice statistics even when strong 
non-local connectivity constraints apply. The self-avoidance constraint allows a condi- 
tional independence. It is not as strong as the purely local conditional independence 
occurring in Ising-like models (models which are described in statistical terms as 
Markov Random fields, see Dobrushin (1968) and references cited by Enting and 
Welberry (1978)) and so the polygon enumeration is more complicated than deriving 
Ising model series. 
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The enumeration techniques are relevant for a number of other interesting prob- 

(i) Site percolation: each cluster is bounded externally by a polygon on the dual 
lattice and so the connection is quite direct. 

(ii) Colouring polynomials: the connectivity constraint requires a more general 
labelling but the principles are similar. 

(iii) Quantum XY model: the time ordering operator introduces connectivity 
constraints. 

(iv) Certain subsets of the partial generating functions sum to give generating 
functions for self-avoiding walks whose ends are on the edge of a bounded 
square lattice, but the use of these generating functions seems to give at most a 
slight improvement over direct enumeration techniques. 

(v) In principle the polygon enumeration and the various generalisations could all 
be applied to triangular lattice systems. 

The generating function techniques have given a greatly improved means of 
enumerating square lattice polygons. It is to be expected that similar improvements will 
be achieved when some of the other problems mentioned above are tackled using these 
techniques. 

lems in statistical physics. 
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